Markov Chains

Statistical Problem

. We may have an underlying evolving system

$$
\text { (new state) }=\text { f(old state, noise) }
$$

- Input data: series of observations $X_{1}, X_{2} \ldots X_{t}$
- Consecutive speech feature vectors are related to each other.
- We cannot assume that observations are i.i.d.

Markov Process

- Markov Property: The state of the system at time $t+1$ depends only on the state of the system at time t

$$
\operatorname{Pr}\left[X_{t+1}=x_{t+1} \mid X_{1} \cdots X_{t}=x_{1} \cdots x_{t}\right]=\operatorname{Pr}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right]
$$

- Stationary Assumption: Transition probabilities are independent of time (t)

$$
\operatorname{Pr}\left[X_{t+1}=b \mid X_{t}=a\right]=p_{a b}
$$

Bounded memory transition model

Markov Process

Simple Example

Weather:

- raining today

- not raining today

20\% rain tomorrow
80\% no rain tomorrow
Stochastic Finite State Machine:

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{T+1}=\text { norain } \mid X_{T}=\text { rain }\right)=0.6 \\
& \operatorname{Pr}\left(X_{T+1}=\text { rain } \mid X_{T}=\text { rain }\right)=0.4
\end{aligned}
$$

Markov Process

Simple Example

Weather:

- raining today

- not raining today

20\% rain tomorrow
80\% no rain tomorrow
The transition matrix:

$$
P=\left(\begin{array}{ll}
0.4 & 0.6 \\
0.2 & 0.8
\end{array}\right)
$$

- Stochastic matrix:

Rows sum up to 1

Markov Process

Coke vs. Pepsi Example

- Given that a person's last cola purchase was Coke, there is a 90\% chance that his next cola purchase will also be Coke.
- If a person's last cola purchase was Pepsi, there is an 80% chance that his next cola purchase will also be Pepsi.
transition matrix:

$$
P=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.2 & 0.8
\end{array}\right]
$$

Markov Process

Coke vs. Pepsi Example (cont)
Given that a person is currently a Coke purchaser, what is the probability that he will purchase Pepsi three purchases from now?

$$
P^{3}=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.2 & 0.8
\end{array}\right]\left[\begin{array}{ll}
0.83 & 0.17 \\
0.34 & 0.66
\end{array}\right]=\left[\begin{array}{ll}
0.781 & 0.219 \\
0.438 & 0.562
\end{array}\right]
$$

Markov Process

Coke vs. Pepsi Example (cont)
Simulation:

EigenValue problem

Steady-State Probabilities

Property 2: Let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)$ is the m-dimensional row vector of steady-state (unconditional) probabilities for the state space $\boldsymbol{S}=\{1, \ldots, m\}$. To find steady-state probabilities, solve linear system:

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P}, \sum_{j=1, m} \pi_{j}=1, \pi_{j} \geq 0, j=1, \ldots, m
$$

Brand switching example:

$$
\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)\left[\begin{array}{lll}
0.90 & 0.07 & 0.03 \\
0.02 & 0.82 & 0.16 \\
0.20 & 0.12 & 0.68
\end{array}\right]
$$

$$
\pi_{1}+\pi_{2}+\pi_{2}=1, \pi_{1} \geq 0, \pi_{2} \geq 0, \pi_{3} \geq 0
$$

Steady-State Equations for Brand Switching Example

$$
\begin{aligned}
& \pi_{1}=0.90 \pi_{1}+0.02 \pi_{2}+0.20 \pi_{3} \\
& \pi_{2}=0.07 \pi_{1}+0.82 \pi_{2}+0.12 \pi_{3} \\
& \pi_{3}=0.03 \pi_{1}+0.16 \pi_{2}+0.68 \pi_{3} \\
& \pi_{1}+\pi_{2}+\pi_{3}=1 \\
& \pi_{1} \geq 0, \quad \pi_{2} \geq 0, \quad \pi_{3} \geq 0
\end{aligned}
$$

Total of 4 equations in 3 unknowns
\rightarrow Discard $3^{\text {rd }}$ equation and solve the remaining system to get :

$$
\begin{aligned}
& \pi_{1}=0.474, \pi_{2}=0.321, \pi_{3}=0.205 \\
& q_{1}(0)=0.25, q_{2}(0)=0.46, q_{3}(0)=0.29
\end{aligned}
$$

Steady-state probabilities may not exist for some Markov chains

Ranking Nodes on the Graph: PageRank (Google)

- All Internet web pages are not equally "important"
www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page \boldsymbol{j} with importance r_{j} has \boldsymbol{n} out-links, each link gets r_{j} / n votes
- Page j's own importance is the sum of the votes on its in-links

$$
r_{j}=r_{r} / 3+r_{k} / 4
$$

PageRank: The Markov Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_{j} for page j

$$
r_{j}=\sum_{i=j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of r
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,

Equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{a}} / \mathbf{2} \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / \mathbf{2}
\end{aligned}
$$

Example: Web Equations

$$
r=M \cdot r
$$

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / \mathbf{2}
\end{aligned}
$$

y
a
m
:---:
$1 / 2$
0
:---:
a
m

Notice that the web transition matrix $\quad M=P^{T}$

Solving the steady-state Equations

- 3 equations, 3 unknowns, no constants
- No unique solution

Equations:

$$
\begin{aligned}
\mathbf{r}_{\mathrm{y}} & =r_{\mathrm{r}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
\mathbf{r}_{\mathrm{a}} & =\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
\mathbf{r}_{\mathrm{m}} & =\mathrm{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
- $r_{y}+r_{a}+r_{m}=1$
- Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!
J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets,
http://www.mmds.org

Eigenvector Formulation

- The web equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

- So the rank vector r is an eigenvector of the stochastic web matrix \boldsymbol{M}
- In fact, its first or principal eigenvector, with corresponding eigenvalue 1
- Largest eigenvalue of \boldsymbol{M} is $\mathbf{1}$ since \boldsymbol{M} is column stochastic (with non-negative entries)
- We know \boldsymbol{r} is unit length and each column of \boldsymbol{M} sums to one, so $\mathbf{M r} \leq \mathbf{1}$

NOTE: \boldsymbol{x} is an eigenvector with the corresponding eigenvalue $\boldsymbol{\lambda}$ if:
$A x=\lambda x$

- We can now efficiently solve for r ! The method is called Power iteration

PageRank: Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{(0)}=[1 / N, \ldots ., 1 / N]^{\top}$
- Iterate: $\mathbf{r}^{(t+1)}=\mathbf{M} \cdot \mathbf{r}^{(t)}$

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Stop when $\left|\mathbf{r}^{(t+1)}-\mathbf{r}^{(t)}\right|_{1}<\varepsilon$
$d_{i} \ldots$. out-degree of node i
$|\mathbf{x}|_{1}=\sum_{1 \leq i \leq N}\left|x_{\mathrm{i}}\right|$ is the L_{1} norm
Can use any other vector norm, e.g., Euclidean

Markov Chain Structure in Speech

- Left-right model

- Ideally each phoneme corresponds to a state but it may not be the case in practice!

Hidden Markov Models - HMM

Hidden Markov Models - HMM

Coin-Tossing Example

HMM

- Doubly embedded random process
- One of the process: Sequence of states is not observable (hidden)
- The state sequence may not be unique, even if we know that we begin in state one.
- However, some state sequences may be more likely than others.
- Learning: Given the HMM structure (number of visible and hidden states) and a training set of visible state sequences, determine the transition probabilities for hidden and visible states
- Evaluation: Computing the probability that a sequence of visible states was generated by a given HMM
- Decoding: Determine the most likely sequence of hidden states that produced a sequence of visible states

References

- We will follow the following paper:

A tutorial on hidden Markov models and selected applications in speech recognition

LR Rabiner - Proceedings of the IEEE, 1989 - ieeexplore.ieee.org

A short version of the above paper

- An introduction to hidden Markov models

LR Rabiner, BH Juang - ASSP Magazine, IEEE, 1986 - ieeexplore.ieee.org

Longer version of the paper:

- Fundamentals of Speech Recognition 1st Edition by Lawrence Rabiner (Author), Biing-Hwang Juang (Author)

